

The paradox of adversarial liquidation in decentralized lending

Samuel N. Cohen with Oxford and ATI

ith

simtopia.ai

with Marc Sabaté Vidales, Łukasz Szpruch and Mathis Gontier Delaunay

Decentralized lending

Lending is the basis of financial systems

- ► A key part of the DeFi ecosystem
- Large values currently lent more than 30% TVL in Ethereum's protocols
- Different from classical finance, as no recourse (e.g. to the courts, credit ratings, ...)
- Risk management is critical

Collateral rules

How do we protect against bad debt?

- ▶ As there is no recourse, positions need to be overcollateralized.
- We wish to borrow b units of asset X, using c units of Y as collateral, with P as price of Y in numeraire X.
- Our collateral value is cP, and we assign a haircut factor θ to give a maximum borrowed amount θcP_t
- ► The *health factor* of our position is then $\mathbb{HF}_t = \frac{b}{\theta c P_t}$. Our position is in margin-default if $\mathbb{HF}_t \leq 1$.
- A higher value of θ is often chosen to establish a position (cf. initial vs maintenance margin)
- We choose θ based on a variety of principles, as we shall see.

(Partial) Liquidation

- ▶ When a position is in margin-default, any participant is able to close-out the position.
- ► This differs from classical clearing, where this is a role of the clearing house, who do not typically trade speculatively on their own account.
- The liquidator repays the loan value (b units of X), and receives the collateral value of the position, plus a proportional bonus, i.e. $(1 + \ell)b/P_t$ units of Y
- ▶ The reward ℓ is to encourage liquidators to act, and is paid from the overcollateralization of the position.
- Some protocols also limit the fraction of a position which can be liqudiated in a single transaction.

(Partial) Liquidation

- In order to ensure a position can be fully closed out, we require $(1+\ell)b/P_t \leq c$, which simplifies (as $c=\theta bP_t$) to $\theta(1+\ell) \leq 1$.
- ▶ This gives us a bound between the rewards and the collateralization level, in particular an upper bound on ℓ .
- In general (with partial liquidation), the health factor of a position will improve after liquidation iff $\mathbb{HF}_t > \theta(1+\ell)$
- We can then choose θ to ensure an expected-shortfall type condition is preserved, to avoid the risk to liquidity providers if liquidators do not act quickly.

Enabling Liquidation

- As liquidation is done by general agents (not the protocol), they will only act if it is profitable to do so.
- ▶ As they have to expend *X* and receive *Y*, we need to account for the cost of reversing this transaction.
- ▶ This gives us a basic guide to a lower bound on ℓ .
- We assume that the liquidator will immediately reverse their trade, trading an amount y for x. We suppose they face a price $P_t \Delta(P_t, x)$ for this trade, and move the price to $P_t H(P_t, x)$.
- ▶ If the trading is in an AMM, these quantities are known and computable.

Enabling Liquidation

If the liquidator liquidates a fraction κ of the loan, and minimally trades of offset their position, we have the sequence of cashflows

- 1. Liquidate: $-\kappa b$ units of X and $+(1+\ell)\kappa b/P_t$ units of Y
- 2. Trade: $+\kappa b$ units of X and $-\kappa b/(P_t \Delta(P_t, \kappa b))$ units of Y Net position in Y:

$$\kappa b \Big(rac{(1+\ell)}{P_t} - rac{1}{P_t - \Delta(P_t, \kappa b)} \Big)$$

This is a profit iff $1+\ell>\frac{P_t}{P_t-\Delta(P_t,\kappa b)}=\left(1-\frac{\Delta(P_t,\kappa b)}{P_t}\right)^{-1}$.

Enabling Liquidation

The net result of this is that, in order to have the risk-management system operating properly, without assuming liquidators will bear market risk. we need

$$rac{1}{1+\ell} \in \left[heta, \quad \left(1 - rac{\Delta(P_t, \kappa b)}{P_t}
ight)
ight]$$

- This ties the functioning of the liquidation system to the liquidity of the reference market.
- Low liquidity in the market makes risk management more difficult.
- ▶ Usually θ , ℓ will be fixed for longer periods, leading to a potential market failure.

Protocol risks

A lending protocol faces a variety of practical risks

- Bank runs particularly if collateral is rehypothecated for lending (which is needed if interest is to be paid on collateral)
- ▶ Wrong way risk failures occur when one asset collapses
- Adverse selection and arbitrage if θ is low, bad debt may be cheaper than purchasing assets directly
- Liqudiation spirals
- Adversarial liquidation and short squeezes

We will focus on the final two of these.

Adversarial Liquidation

- Our earlier liquidation model assumes liquidators are largely passive, as in traditional clearing.
- However, here they have the ability to front-run the liquidation process.
- As price impact is known (when the reference/oracle market is an AMM), this causes problems...

Adversarial Liquidation

An adversarial liquidator can act as follows:

- ▶ Identify a loan with health factor $\mathbb{HF}_t \leq (1 \frac{H(P_t, \kappa b)}{P_t})$
- 1. Trade: $+\kappa b$ units of X and $-\kappa b/(P_t \Delta(P_t, \kappa b))$ units of Y, moving the price to $P_t H(P_t, \kappa b)$.
- Notice that this moves ℍF below 1, and hence the position can be liquidated
- 2. Liquidate: $-\kappa b$ units of X for $+\frac{(1+\ell)\kappa b}{P_t H(P_t, \kappa b)}$ units of Y.

Net position:

$$\kappa b \Big(\frac{1+\ell}{P_t - H(P_t, \kappa b)} - \frac{1}{P_t - \Delta(P_t, \kappa b)} \Big)$$

Adversarial Liquidation

This leads to the paradox of adversarial liquidation:

► In order for passive liquidation (without price manipulation) to be profitable, we require

$$1 + \ell > \frac{P_t}{P_t - \Delta(P_t, \kappa b)}$$

But this implies, under reasonable market assumptions,

$$1 + \ell > \frac{P_t - H(P_t, \kappa b)}{P_t - \Delta(P_t, \kappa b)}$$

and we see that frontrunning the trade is more profitable.

Practically, this implies the critical health factor is above 1, but the reward to liquidators ℓ could be lowered.

Liquidity at risk

- ► For a protocol with rehypothecation of collateral, a key concern is liquidity at risk – how much collateral will be demanded by liquidators in the short run?
- This depends on whether liquidators front-run trades or not.
- ▶ We define the function $\mathcal{L}(p) = \frac{\kappa(1+\ell)}{p} \sum_{j} b^{j} 1_{\{\theta c^{j} p \leq b^{j}\}}$, which describes the quantity of Y demanded if the price moves to p.
- ▶ Without front running, one simply computes the expected shortfall of $\mathcal{L}(P_{t+h})$ over the desired horizon

Liquidity at risk

- ► With front running, we assume that liquidators will manipulate the market as much as it is profitable to do so.
- ► We then compute the maximum amount in *x* which liquidators will want to trade, given their price impact:

$$\mathcal{X}(p) = \operatorname{arg\,max}_{x} \left\{ p\mathcal{L}(p - H(p, x)) - x \right\}$$

and hence the liquidation at risk accounting for front running

$$\mathcal{L}(p - H(p, \mathcal{X}(p)))$$

► The expected shortfall can then be computed via simulation, as usual.