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ABSTRACT. We present a holistic framework for risk and reward management for
decentralised lending protocols, such as AAVE or Compound. This framework
highlights tensions and trade-offs in protocol design and the choice of various risks
and incentives parameters.

Using this, we identify the fundamental paradox of adversarial liquidation in
decentralised lending: If the rewards to liquidators are chosen such that there is
an incentive for liquidators to act when a loan is in distress (as is needed for well
functioning of the protocol), then it is also the case that liquidators are incentiv-
ised to manipulate prices (through front-running the liquidation process), leading
to suboptimal outcomes for borrowers.

1. INTRODUCTION

Decentralised finance (Defi) protocols such as Uniswap [2], Aave [1], Compound
[3] or Morpho [4], allow users to trade on the Ethereum chain without having to rely
on a central trusted entity such as traditional banks [15, 13, 12]. Lending protocols in
particular concentrate more than 30% of the TVL (Total Value Locked) in Ethereum’s
Defi protocols 1. As a consequence there has been recent effort in the identification
and mitigation of the risks associated to their components [9] [14], as well as an
analysis of recent attacks associated with, but not limited to, price oracles or token’s
price manipulation [16] [6].

Decentralised lending protocols, such as Aave or Compound, resemble a collater-
alised debt market (CDM) by pooling assets from lenders to enable over-collateralised
loans to borrowers. In particular, loan contracts in this market are similar to tradi-
tional finance (TradFi) stock loans and can be studied through the lens of American
options, [11, 5, 7]. A novel feature of these markets, in comparison to stock loans,
is that debt positions which are not sufficiently collateralised are auctioned off to
liquidators at a discount. Careful design is required in order to provide the right in-
centives to partipants and to maintain a stable balance of protocol users under varied
economic and market conditions and scenarios. The key elements in the design of
lending protocols are:

• Interest rate model, which determines the cost of borrowing and yields earned
by suppliers.
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• Loan-to-value ratios at loan origination, liquidation thresholds and bonuses
which control the acceptable level of risk for the protocol and its users.

• Collateralisation rules, which determine which assets can be used as collat-
eral and control the exposure of the protocol to a particular asset class.

All the above components intrinsically rely on parameters which depend on chan-
ging market conditions and risk and reward trade-offs among market participants.
Empirical evaluation of these has been done, for example, in [10, 8], but we are not
aware of a study that presents a systematic analysis of risks and incentives of the
current evolution of lending protocols. The main objective of this article is to fill this
gap. In particular:

• We present a holistic framework for risk management for decentralised lend-
ing protocols. Our approach relies on coherent risk measures, such as Expec-
ted Shortfall, that allows idnetification of the liquidation threshold parameters
such that a loan remains overcollateralised after a period of time with high
probability.

• We study the properties of lending protocols, focusing on the effects and
risks of liquidation, once the protocol’s parameters are fixed. We explore
market conditions under which liquidation spirals may happen, that is, when
liquidation trigger further liquidations.

• We finally identify the fundamental paradox of adversarial liquidation in de-
centralised lending protocols. If the rewards to liquidators are chosen such
that there is an incentive for liquidators to act when a loan is in distress (as
is needed for well functioning of the protocol), then it is also the case that
liquidators are incentivised to manipulate prices (through front-running the
liquidation process), leading to suboptimal outcomes for borrowers.

The article is structured as follows. In Section 2 we describe in detail how lending
protocols in DeFi space operate. In Section 3 we provide a high-level overview of
associated risks building on what’s known in TradFi. In Section 4, we analyse liquid-
ations and spell out the paradox of adversarial liquidations. Statistical perspectives
on Liquidation at Risk and collateral requirements are presented in Sections 5 and 6,
respectively. We conclude by evaluating our results using simulation in Section 7.

2. DECENTRALISED LENDING PROTOCOL

2.1. Key Variables. For simplicity through the rest of this report we will consider
the case when the loan consists of a single borrowed asset2, which we set to be S0 and
n collateral assets (S1, . . . ,Sn). Each loan position is characterised by a pair (bt ,ct)t≥0,
where bt ∈ R+ and (c1

t , . . . ,c
n
t ) ∈ Rn

+; these specify the amounts of borrowed and
collateral assets at time t ≥ 0, respectively. The mark-to-market value3, of debt and
collateral in a common numéraire are given by

bt ·S0
t and ⟨ct ,St⟩=

n

∑
i=1

ci
t ·Si

t .

2For the purpose of risk analysis, this means we are interested in how much collateral is required
for a single debt asset. In the case of multiple borrowed assets, a collateral requirements can be aggreg-
ated, leading to a conservative approach that does not take advantage from potential netting between
borrowed positions.

3Mark-to-market provides a convenient accounting convention, but does not take into account mar-
ket frictions such as slippage, wrong-way risk, or gas and transaction fees.
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It is convenient to introduce the price of collateral assets in terms of the debt asset

Pi
t :=

Si
t

S0
t
.

With (bt ,ct ,St) being given, the (total) position loan-to-value (LTV) is defined as

LTVt :=
bt ·S0

t

⟨ct ,St⟩
=

bt

⟨ct ,Pt⟩
, t ≥ 0 .

For simplicity, in what follows, we will work with the debt asset being the numéraire.
In other words, we consider the borrowing being for a fixed amount of the reference
asset, and the collateral assets having prices Pi.

The process of borrowing from a lending protocol at time t0 ≥ 0 follows the steps:
(1) Begin with supplying assets ct0 = (c1

t0 , · · · ,c
n
t0) to be used as collateral. These

quantities must be nonnegative. These collateral assets earn interest (which is
reinvested in the collateral asset position) according to (Ic

t0,t) = (I1,c
t0,t , . . . , I

n,c
t0,t )

so that, in the absence of a liquidation event in the time interval [s, t],

ct = cs ⊙ Ic
s,t = (c1

s · I
1,c
s,t , . . . ,c

1
s · I

n,c
s,t ) where Ii,c

s,t := e
∫ t

s γ
i,c
z dz .

Here the (continuously compounding) interest rate for the ith collateral asset,
at time t, is given by γ

i,c
t .

(2) The protocol’s governance indicates a risk level for each collateral asset, dic-
tated by a vector Θinit = (θ 1

init, · · · ,θ n
init). This has a standard interpretation as

a haircut on the collateral assets’ values, depending on their riskiness. Given
supplied collateral ct0 , its current market price Pt0 (with the borrowed asset
being a numéraire) and Θinit the limit on the amount of the asset that can be
borrowed (in terms of units of the borrowed assets, as we have taken S0 as
numéraire) is

bt0 ≤
n

∑
i=1

θ
i
init · ci

t0 ·P
i
t0 .

Here θ i
init · ci

t0 ·P
i
t0 has an interpretation as the risk-adjusted value of the col-

lateral provided, at time t0, under the initial-collateral rule. We will discuss
collateral rules during the lifetime of the loan below.

(3) Pay interest according to (Ib
t0,t) specified by the protocol’s governance, in the

debt asset. We assume continuous compounding with rate (γb
t )t so that, in

the absence of a liquidation event in the time interval [s, t] the amount of
borrowed assets increases according to

bt = bsIb
s,t where Ib

s,t := e
∫ t

s γb
z dz .

We observe that, provided θ i
init ∈ [0,1] for all i, we have

LTVt0 :=
bt0

∑
n
i=1 ci

t0 ·Pi
t0
≤

∑
n
i=1 θ i

init · ci
t0 ·P

i
t0

∑
n
i=1 ci

t0 ·Pi
t0

≤ 1,

that is, the loan is initially fully collateralized.

2.2. Liquidation thresholds. For over-collateralized loans, it is required that for all
t ≥ 0 a position satisfies LTVt ≤ 1, that is, the value of the debt bt is below value
of the collateral (ct ,Pt). When LTVt > 1 a rational borrower will walk away from
the loan, opening the lending protocol liquidity providers to a loss. For this reason,
lending protocols allow any participant in the blockchain to repay (a percentage of)
the debt for those positions with LTVt close to one, in return for the corresponding
percentage of the collateral plus a liquidation bonus. The bonus provides an incentive
for the liquidator to take over part of delinquent parties’ positions, and needs to be in
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line with market conditions to account for slippage, cascading liquidations, gas fees,
MEV, etc.

Liquidity risk arises when no participant on a blockchain network is willing to
repay a delinquent party’s position. This may arise at times of high uncertainty or
other market dislocations. It can fundamentally only be mitigated by collateral re-
quirements being sufficiently large to make liquidation attractive.

In order to determine the collateral requirements during the lifetime of a loan, the
collateral is valued with a haircut, similarly to the valuation at the initial time t0. This
is done using a vector Θt = (θ 1

t , · · · ,θ n
t ), with θ i ∈ [0,1]. The collateral is assigned

a risk-adjusted value Ct = ∑i θ i
t · ci

t ·Pi
t , and the loan can be liquidated whenever the

‘health factor’ satisfies
HFt :=

Ct

bt
≤ 1.

Note that
LTVt =

bt

∑i ci
t ·Pi

t
≤ max

i
{θ

i
t }

bt

Ct
= max

i
{θ

i
t }

1
HFt

so provided maxi{θ i
t }< 1 the loan is open to liquidation before LTV reaches 1.

Typically, in order to provide a buffer against immediate liquidation of a position
(due to small moves in the values of collateral assets), the collateral values are chosen
to have Θinit = λΘt0 , for some λ < 1. If Θt is a constant vector Θt = (θt ,θt , · · · ,θt),
then 1/HFt =

1
θt
LTVt , and we are simply considering a liquidation rule based on a

multiple of LTV.
The choice of Θ must balance conflicting objectives. If Θt0 is too far from 1 =

(1, . . . ,1), a very high level of overcollateralization is demanded of borrowers. This
reduces risks, but leads the protocol to be unnattractive to users. If Θt is too close
to 1, then there is little room for a liquidation bonus, and a liquidator might not be
sufficiently incentivised to close the position on time.

2.3. Liquidations. The percentage of debt that the liquidator can repay in a single
transaction is determined by close factor parameter κmax ∈ (0,1]. For example,
AAVE-v3 allows a liquidator to repay up to 50% debt in a single typical transaction.

The liquidation times (τm) are defined recursively, for m = 1,2, . . ., as

τ
m = inf

{
t > τ

m−1 : bt ≥ Ct
}
, τ

1 > t0 .

It’s convenient to assume that, if there is a liquidator willing to close (part of) the
loan open for a liquidation, they will always do so, and therefore liquidations occur
at the times (τm)m≥1

4.
At a liquidation event, the liquidator chooses a level κ ≤ κmax, repays κ ·bτm and

in exchange receives ĉi
τm(1+ ℓi) of collateral i, where ℓi > 0 is the liquidation bonus

in this collateral asset, and ĉτm is a solution to

κ ·bτm = ⟨ĉτm ,Pτm⟩ . (1)

In order for this to be feasible, we clearly require that there be enough collateral held
to pay the liquidator, that is, ĉi

τm(1+ ℓi) ≤ ci. Given Θ, and considering a borrower
providing only a single collateral asset, this implies the condition θ i(1+ ℓi)≤ 1 (see
Lemma 1).

Here we used a vector of collateral mid prices Pτm from an external exchange
that the protocol has access to via oracle (e.g chainlink). Note that equation (1)
in general does not have a unique solution, and a liquidator will typically demand

4We could easily introduce a random delay and, for example assume, that liquidator arrives at τ +
δt ,with δt being a random variable calibrated to market conditions, and liquidate part of the position
provided this is profitable
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collateral assets that pay the highest liquidation bonus adjusted for trading costs5. In
the absence of market frictions, a liquidator realises a profit (in the numéraire asset)
of ∑i ℓ

i · ĉi
τm
·Pi

τm
.

Note that when LTVτ ≥ 1 it is still be possible to liquidate part of the position, but
the protocol is left with a loss that needs be absorbed by an insurance fund; if that is
not sufficient, the loss will be shared among liquidity providers.

3. RISKS AND WEAKNESSES

We here describe, heuristically, some of the key risks facing participants in lending
markets, and how the protocol can be adversarially manipulated. We will explore
models for some of these risks in subsequent sections.

3.1. Fractional reserves and bank runs. As is common in traditional banking, the
collateral provided by borrowers is used to enable borrowing of the collateral asset;
this is needed to fund the interest payments on collateral. However, this means that
the collateral is not immediately available, either for liquidation or upon repayment
of a loan (at which point the collateral can be withdrawn from the system), or in the
event of liquidation being necessary. In this case, the system is essentially running
a fractional reserve banking protocol, resulting in a risk of there being insufficient
liquidity to cover short-term withdrawals from the protocol. In traditional finance,
this is the well-known phenomenon of a bank-run, but in decentralized systems the
traditional deposit-insurance schemes (where a central bank intervenes in the market)
are not available.

As a consequence, it is important to ensure that a sufficient quantity of assets are
kept liquid at any time. This can be done through limiting borrowing, and through
modifying interest rates to encourage repayment of asset types which are needed by
the protocol’s reserves system.

3.2. Wrong-way risk. Fluctuations of market prices of debt and collateral can make
loan positions insolvent, that is, without rapid liquidation, it is possible for LTVt to
grow to exceed 1. In order to prevent this, liquidators need to be sufficiently rewarded
that liquidating a position is profitable.

However, this raises the problem of wrong-way risk. Suppose the value of collat-
eral assets (in terms of the debt asset) is falling, meaning LTV is rising. This is often
accompanied by a loss of market liquidity for the collateral asset, making it difficult
to quickly trade collateral for the debt asset in the open market. The liquidator then
faces a challenge, as after liquidation they will need to exchange collateral for debt
assets (as they expend debt assets during the liquidation process). Unless the liquid-
ation reward ℓ is sufficiently large, it may not be profitable for the liquidator to act.
This leads to a failure of the protocol risk management.

3.3. Adverse selection and arbitrage. Ignoring transaction fees, in the situation
where the market for a collateral asset is very illiquid or the value of the collateral
asset is falling quickly, if the initial collateral Θinit factors are not set sufficiently low,
this may lead to unexpected trading patterns. For example, a trader could borrow
b units of the debt asset using the lending protocol, and correspondingly deposit
ci

t = b/(θ i
init ·Pi

t ) units of a particular collateral asset. If the trader simply walks away
from the lending protocol at this point (with no intention of repaying the loan), they
have effectively purchased the debt asset for a unit price (Pi

t θ i
init)

−1. If θ i
init is near 1,

as (Pi)−1 is the mid price for debt asset in terms of collateral, this may be better than

5A rational liquidator will monitor market conditions and have an estimate of the execution costs of
swapping units of collateral for the asset of his choice
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the price they could achieve through trading in the market when accounting for their
price impact.

3.4. Liquidation spirals. Given the role of liquidators, there is a potential for these
systems to enter liquidation spirals, where an initial liquidation results in more liquid-
ations becoming needed. Suppose a debt position is initially liquidated, resulting in
a liquidator receiving collateral assets and expending debt assets. If the liquidator
then reverses this trade on the open market, they will impact the price of the col-
lateral asset Pi, typically decreasing it, due to their market impact. As a result, the
health factor of debt positions (both of the original borrower and other borrowers us-
ing the same collateral asset) will worsen, resulting in more positions becoming open
to liquidation.

3.5. Adversarial liquidation. As an extension of the previous issue, there is the
possibility that an opportunistic liquidator will front-run the liquidation process by
initially trading in the open market. Their price impact will decrease the value of
collateral, depressing the health factors of borrowers, and opening up positions for
liqudation. The liquidator can then liquidate their positions, for a net profit.

Whether this is possible depends on how prices in the primary market are taken
into the lending protocol (through the oracle process). If the oracle provides instant
accurate versions of the mid price, it seems impossible to avoid the potential for
adversarial liquidation, while maintaining the profitability of liquidation. We return
to this issue in the next section.

3.6. Short Squeeze. Another adversarial scenario, related to the liquidation risk
above, is the ‘short squeeze’. Suppose, as discussed, the protocol allows the col-
lateral to be borrowed, effectively reversing the role of the collateral and debt assets.
A trader could borrow a large amount of asset i and sell it on the market, pushing the
price Pi down. This may trigger the liquidation of the positions that are collateralized
with asset i. In turn, as described above, this can lead to liquidation spirals that fur-
ther reduce Pi. At that point, the trader could a) remove a large part of the collateral
used to borrow asset i in the first place (since the LTV for the position will decrease);
b) buy back aset i at a significantly lower price than it was sold. For analysis of an
attempt of the above exploit, see [6].

3.7. Multiple protocols and arbitrage. When there are multiple protocols, there
is a competition issue surrounding collateral rules and interest payments. While it’s
natural to have the interest rate determined endogenously and dynamically through
a competitive interaction between liquidity providers, borrowers and the protocol’s
reserve rules, it is not apparent that the collateral constants θ i should be allowed to
vary similarly.

In particular, any endogenization of the collateral requirements will need to be
done while taking care to prevent the potential for manipulation of the collateral rules,
which can form a critical point of failure for the risk management of the protocol.

4. ANALYSIS OF (ADVERSARIAL) LIQUIDATIONS

4.1. Liquidation bonus. When deciding how large the liquidation bonus should be,
there are two primary considerations:

• The Liquidation bonus should be ‘sufficiently large’ so that liquidators have
incentive to remove bad debt from the protocol, and borrowers do not have
incentive to create bad debts. To assess what ‘sufficiently large’ means, it
is critical to consider the market conditions that drive the execution cost of
swapping redeemed collateral for the debt asset.
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• The liquidation bonus should be ‘sufficiently small’ so that the loan position
can be completely liquidated at any time, i.e. redeemed collateral together
with liquidation bonus does not exceed available collateral. This essentially
corresponds to a choice of Θt , which needs to be sufficiently small to manage
risk, without overly disincentivizing borrowers from using the protocol.

The role of the liquidator is similar to that of an arbitrageur in financial markets.
A stylized liquidator operates as follows:

i) Begin with zero capital6.
ii) Choose a level κ < κmax of debt to liquidate. Borrow κ ·bτm (e.g using a flashloan)

of debt assets.
iii) Liquidate (part of) the debt position, by paying κ ·bτm in debt assets to receive the

collateral vector7 with liquidation bonus ĉτm ⊙ (1+ ℓ), where ĉτm is determined
by (1)

iv) At the external exchange (assuming no market friction), swap the vector ĉτm of
collateral assets for debt assets, to obtain κ ·bτm (as determined by (1)).

v) Pay back the initial loan of κ ·bτm and keep the profit vector ĉτm ⊙ ℓ.
In practice step (4) is unrealistic as there are necessary execution costs due to

slippage, MEV, gas fees, etc. Denote by ∆t(x) the price slippage (inclusive of MEV,
gas fee, etc.) when trading an amount x on the market 8. That is, the amount received
(in terms of the debt asset) when selling a vector x of collateral assets is given by
⟨x,Pt −∆t(x)⟩.

With this notation, in order to obtain κ ·bτm = ⟨ĉτm ,Pτm⟩ in debt assets on the open
market, the liquidator will need to solve for x in the equation

⟨x,Pτm −∆τm(x)⟩= ⟨ĉτm ,Pτm⟩ . (2)

In order for this to be profitable, there needs to be a solution with x ≤ ĉτm ⊙ (1+ ℓ)
componentwise, at least for some ĉτm with κ ·bτm = ⟨ĉτm ,Pτm⟩ and ĉτm ≤ cτm . In turn,
this forces a relationship between ℓ and the slippage ∆.

Furthermore, a sophisticated liquidator might also decide to unwind ĉτm over some
period of time [τm,τm+T ], for a horizon T > 0, to balance potentially significant ex-
ecution costs (especially during thin liquidity periods) with adverse price movements.
However, it is important to note that this exposes them to heightened wrong-way risk,
as this typically needs to be done in a situation where the relative value of collateral
Pτm is falling.

In the case of multiple collateral assets, it is typically permitted for a liquidator to
redeem one collateral asset at a time. This is convenient, as it allows us to reduce our
analysis accordingly.

Our first observation, in the following lemma, considers whether there is sufficient
collateral to liquidate a position, accounting for the liquidation bonus.

Lemma 1 (Ability to liquidate fully for one-collateral loan). Consider a loan with
liquidation bonus ℓi ∈ R>0. There is sufficient collateral to liquidate the position
fully, accounting for the liquidation bonus, if and only if

∑
i

ci
τm

Pi
τm

1+ ℓi ≤ bτm .

6This is simply to avoid having to account for the interest they should earn on their initial capital
7We recall that we write ⊙ for componentwise multiplication of two vectors, and represent portfolios

of collateral assets by vectors.
8This could be estimated from data e.g one could assume polynomial slippage and estimate the order

and coefficients of the polynomial by running regression analysis, similarly one could run a predictive
model for gas fee and MEV
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Assuming any combination of collateral assets can be held, this yields the condition

θ
i(1+ ℓi)≤ 1 ,

relating the protocol thresholds and liquidation bonuses.

Proof. We omit the subscript τm for notational simplicity. Consider the extreme case
where all collateral assets are given to a liquidator, with no remainder. That is, the
liquidator will pay the full value b of the debt asset, and receive in payment the vector
c = ĉ⊙ (1+ℓ). For this to correspond to the cost of repaying the asset, we must have

b = ⟨ĉ,P⟩=
n

∑
i=1

ci

1+ ℓi Pi.

Considering a position collateralized by a single asset, we have

b =
ci

1+ ℓi Pi.

However, at the first moment this position can be liquidated, we also know b= θ i
t ciPi,

so rearrangement gives θ i
t = 1/(1+ ℓi). This gives the binding constraint between θ i

and ℓi, and clearly reducing either θ i or ℓi will lead to a situation where there is (more
than) sufficient collateral to liquidate the position fully.

□

Following partial liquidation, it is not immediately clear that the health ratio will
have improved sufficiently, in particular it may be subject immediately to a further
liquidation. This is because liquidation both reduces the debt (improving the health
ratio), and extracts a liquidation bonus (worsening the health ratio). The following
lemma provides the necessary condition to ensure that liquidation improves the health
ratio overall.

Lemma 2. At a liquidation time τm, the health factor HF will increase (i.e. improve)
for all liquidation strategies if and only if the health factor before liquidation satisfies

HFτm > max
i
{θ

i(1+ ℓi)}.

In particular, if maxi{θ i(1+ ℓi)} < 1 (as suggested by Lemma 1) the health factor
will always improve, provided liquidation occurs sufficiently quickly after a position
becomes open for liquidation, and prices are continuous.

Proof. To begin with, suppose the liquidator chooses to receive payment in the jth
collateral asset. That is, they will repay κ · bτm of the debt, and receive ĉ j(1+ ℓ j)

amount of collateral asset j, where ĉ j ∈ [0,c j
τm ] solves

κ ·bτm = ĉ j ·P j
τm .

Before liquidation, the health factor is given by

HFτm =
Cτm

bτm
=

∑i θ i
t · ci

t ·Pi
t

bt
.

Immediately after liquidation, the health factor becomes

HFτm+ =
Cτm+

bτm+
=

θ
j

t · (ci
τm − ĉ j(1+ ℓ j)) ·Pi

τm +∑i ̸= j θ i
τm · ci

τm ·Pi
τm

(1−κ)bτm

=
1

1−κ
HFτm − θ j(1+ ℓ j)κ

1−κ
.

Rearranging, we have

HFτm+−HFτm =
κ

1−κ

(
HFτm −θ

j(1+ ℓ j)
)

(3)
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Therefore, in order for the health factor to have improved, this equation must be
positive, in other words, as κ ∈ (0,1),

HFτm > θ
j(1+ ℓ j).

For more general liquidations, we can consider the liquidation taking place se-
quentially in each collateral asset. The result follows.

□

Remark 1. Note that the conditions stated in Lemmas 2 and 1 do not depend on the
close factor κ . This implies that the choice of κ is dictated by: a) how much the pro-
tocol penalises borrowers for triggering the liquidation threshold; b) the amount of
collateral needed to liquidate delinquent loan positions. This is linked to Liquidation-
at-Risk, which assesses how much of each type of collateral the protocol needs to
ensure that required liquidations are possible with sufficiently high probability.

4.2. Liquidation Spirals. To extend the analysis of the previous section, to account
for how liquidations affect prices, we need to build a model for the price impact of
our stylized liquidator’s trades.

For simplicity, we will assume that there is a single collateral asset. We recall
that we have already defined the effect of slippage to be given by ∆t , that is, trading
x > 0 collateral assets for debt assets, the price realized by the liquidator will be
Pt −∆(Pt ,x). We have augmented our earlier definition slightly, to allow ∆ to depend
on the current price P. Similarly, we define a function H, which describes the impact
on the price of collateral assets caused by this trade – after the trade, the new price will
be given by Pt −H(Pt ,x). Basic economics of supply and demand suggest that ∆ > 0
and H > 0. In most cases ∆ and H cannot be known perfectly in advance, but can
be estimated from historical data. One setting where perfect knowledge is possible is
the setting of an automatic market maker, as shown in the following example.

Example 1 (Uniswap v2). Suppose the open market is described by a constant
product market (CPM) (e.g. Uniswap v2), with fixed gas fees g. The CPM pool
contains debt assets and collateral assets, with the current relative price Pt . If Xt de-
notes the quantity of collateral assets in the pool, and Yt the quantity of debt assets,
then a constant product market is specified by XtYt = v for some v > 0. The current
price indicates that Xt and Yt should initially be in the ratio Yt/Xt = Pt , which implies
Yt =

√
vPt , and Xt =

√
v/Pt .

A trader can exchange x collateral assets for y debt assets provided (Xt + x)(Yt −
y) = v. We can now calculate our slippage and impact functions, based on the fact
that the trade will satisfy

y = Yt −
v

Xt + x
=
√

vPt −
v√

v/Pt + x
=

Ptx

x
√

Pt/v+1
.

Using this, we obtain, for x ̸= 0,

∆(Pt ,x) = Pt −
y
x
+

g
x
= Pt −

Pt

x
√

Pt/v+1
+

g
x
,

H(Pt ,x) = Pt −
Yt − y
Xt + x

= Pt −
√

vPt − (Ptx)/(x
√

Pt/v+1)√
v/Pt + x

= Pt −
Ptv

(x
√

Pt +
√

v)2 .

We scale the gas fee as it does not dependent on the trade size.

Example 2 (CFM). Consider a general Constant Function Market (CFM) charac-
terised by a bonding function Ψ : R2

+ → R which determines the state of the pool
after each trade according to the acceptable fund positions:{

(x,y) ∈ R2
+ : Ψ(x,y) = constant

}
.



10 THE PARADOX OF ADVERSARIAL LIQUIDATION IN DECENTRALISED LENDING

Let k be the depth of the CFM pool. By the implicit function theorem, there exists a
convex function ψ : R→ R, called the trading function (or level function), s.t.

Ψ(x,y) = v ⇔ ψ(x) = y .

As in the previous example, let Xt denote the quantity of collateral, and Yt the quantity
of debt assets in the pool, respectively. The volume-weighted average price for x,
denoted Pt(x), is given by

Yt − y = ψ(Xt + x) =⇒ Pt(x) :=
y
x
=−ψ(Xt + x)−ψ(Xt)

x
.

In particular we see that Pt = limx→0+ Pt(x) = −ψ ′(Xt). Hence the execution cost
and permanent impact functions for the trade of size x are given by

∆(Pt ,x) = Pt −Pt(x)+
g
x
=

ψ(Xt + x)−ψ(Xt)

x
−ψ

′(Xt)+
g
x

H(Pt ,x) = +ψ
′(Xt + x)−ψ

′(Xt) .

We scale the gas fee as it does not dependent on the trade size.

Given these functions, we can return to our stylised liquidator who, after liquidat-
ing a position, finds themselves short κb units of the debt asset and long (1+ℓ)κb/Pt
units of collateral. We suppose that (given fees and price impact) they will trade
a minimal quantity on the open market to offset their short position, that is, they
will buy κb units of debt assets, for which they pay x units of collateral, where
κb = x(Pt −∆(Pt ,x)). Provided

x <
(1+ ℓ)κb

Pt
⇔ 1 < (1+ ℓ)

(
1− ∆(Pt ,x)

Pt

)
, (4)

this trade is profitable for the liquidator. Comparing with our criterion θ(1+ ℓ) < 1
(which is needed to ensure the liquidation rewards can be paid out of the collateral),
we see that we need to ensure

θ <
1

1+ ℓ
< 1− ∆(Pt ,x)

Pt

in order for the liquidation procedure to be effective. We formalise this observation
as follows:

Lemma 3. Assume the slippage for trading x amount of collateral on the external
market with mid price Pt is given by ∆(Pt ,x). Liquidation is profitable for the liquid-
ator and there is sufficient capital to liquidate the position fully if and only if the
liquidation bonus ℓ satisies

1+ ℓ ∈
[ Pt

Pt −∆(Pt ,x)
,

1
θ

]
.

This further emphasises the importance of the liquidation reward ℓ and threshold θ

depending on market conditions, and provides additional guidance on the appropriate
choice of θ , when compared with the statistical approach which we present in Section
6.

Once the liquidator has made these trades on the open market, the price will have
moved to Pt −H(Pt ,x). As H > 0 (typically), we see that this is a decrease in the
value of the collateral asset. This has the effect of decreasing the health factor of
loans, as the collateral is worth less. In turn this may lead to risk that we will enter
a single-portfolio liquidation spiral, where the health factor is decreased enough to
enable liquidation to reoccur immediately. In the next lemma we provide necessary
and sufficient conditions for this to happen.
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Lemma 4 (Single-asset liquidation spiral). Liquidation of a position causes further
liquidations of the same position if and only if[

1+
κ

1−κ

(
1−θ

j(1+ ℓ j)
)](

1− H(Pt ,x)
Pt

)
< 1,

where x solves κb = x(Pt −∆(Pt ,x)).

Proof. We write HFt− for the health factor before (partial) liquidation, HFt after
liquidation, and HF+ after the liquidators has offset their position in the market. We
know

HFt+ =
θct(Pt −H(Pt ,x))

bt
=HFt

(
1− H(Pt ,x)

Pt

)
.

We now compare with Lemma 2, to ask whether this impact is sufficient to trigger
further liquidations in the same position. Compared with HFt− (the health factor
before liquidation), cf. equation (3), we have

HFt+ =HFt

(
1− H(Pt ,x)

Pt

)
=HFt−

[
1+

κ

1−κ

(
1− θ j(1+ ℓ j)

HFt−

)](
1− H(Pt ,x)

Pt

)
If we assume liquidation occurs at the first possible moment, so HFt− = 1, then

HFt+ =
[
1+

κ

1−κ

(
1−θ

j(1+ ℓ j)
)](

1− H(Pt ,x)
Pt

)
. (5)

The conclusion follows. □

4.3. Multi-loan spirals and adversarial liquidation. There is a second possible
form of liquidation spiral, where a position which holds sufficient collateral finds
its health factor decreased due to the liquidator’s actions on another loan. From
the perspective of this borrower, this is no different to the situation where a liquidator
acts preemptively in the market, in order to depress the value of collateral and thereby
profit.

Definition 1 (Health factor at risk at level x ). We say that a loan’s health factor is at
risk at level x if

HFt ≤
(

1− H(Pt ,x)
Pt

)−1
.

A loan whose health factor is at risk at level x will be open to liquidation whenever
a trade of size x is made in the market.

Suppose the liquidator chooses to front-run the liquidation process, that is, they
trade in the open market first. If there is a loan whose health factor is at risk at
level x, then the liquidator is able to offset their trade though liquidating a loan. The
sequence of events, in this case, is as follows:

(i) A liquidator notices that there is a loan whose health factor is at risk at level x,
where x solves

x =
κb

Pt −∆(Pt ,x)
, (6)

for b the value of the loan and κ the liquidation fraction.
(ii) Liquidator exchanges x units of collateral for κb = x[Pt −∆(Pt ,x)] debt assets.

This causes the price of the collateral to decrease to Pt −H(Pt ,x).
(iii) The health factor of a loan is affected by the price change, decreasing from HFt

to HFt × Pt−H(Pt ,x)
Pt

≤ 1.
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(iv) The liquidator (partly) liquidates the loan, exchanging their κb debt assets for
(1+ ℓ) κb

Pt−H(Pt ,x)
collateral assets. Their net profit (in units of collateral assets)

is

(1+ ℓ)
κb

Pt −H(Pt ,x)
− κb

Pt −∆(Pt ,x)
= x(1+ ℓ)

Pt −∆(Pt ,x)
Pt −H(Pt ,x)

− x .

Therefore, this is a profitable trade whenever

1+ ℓ >
Pt −H(Pt ,x)
Pt −∆(Pt ,x)

. (7)

In the previous section (cf. (4)), we argued that, in order for the liquidation process
to be effective (i.e. in order to ensure profitability of liquidating loans with health
factors below 1), we require the reward ℓ to satisfy

1+ ℓ >
p

p−∆(p,x′)

where x′ satisfies κb = x′(p−∆(p,x′)) and p is the current price. After the front
running trade (step (ii) above), the price has decreased to Pt −H(Pt ,x), which implies,
if the oracle price is immediately updated, we require

1+ ℓ >
Pt −H(Pt ,x)

(Pt −H(Pt ,x))−∆(Pt −H(Pt ,x),x′)
, (8)

where
κb = x′

(
(Pt −H(Pt ,x))−∆(Pt −H(Pt ,x),x′)

)
.

In the next theorem we compare right hand sides of (8) and (7) for the generic
CFM market.

Theorem 1. Consider the CFM with level function Ψ(x,y) = k, and convex trading
function y = ψ(x). Then we have

Pt −H(Pt ,x)
(Pt −H(Pt ,x))−∆(Pt −H(Pt ,x),x′)

>
Pt −H(Pt ,x)
Pt −∆(Pt ,x)

,

where x,x′ are the consecutive trades that buy κb, solving

κb = x(Pt −∆(Pt ,x))

κb = x′
(
(Pt −H(Pt ,x))−∆(Pt −H(Pt ,x),x′)

)
.

The proof is provided in Appendix A . This theorem tells us that if the slippage
and the price impact are derived from a CFM with convex trading function, we are
faced with a conundrum, as

1+ ℓ >
Pt −H(Pt ,x)

(Pt −H(Pt ,x))−∆(Pt −H(Pt ,x),x′)
>

Pt −H(Pt ,x)
Pt −∆(Pt ,x)

.

Therefore, if (8) holds, (7) also holds. This leads to a fundamental paradox of ad-
versarial liquidation protocols.

If the rewards to liquidators are chosen such that there is an incent-
ive for liquidators to act when a loan is in distress (as is needed for
well functioning of the protocol), then it is also the case that liquidat-
ors are incentivised to manipulate prices (through front-running the
liquidation process), leading to suboptimal outcomes for borrowers.

We can also see from this that there is an implied bound on the health factor, which
determines whether adversarial liquidation is possible. This is given by

HFt ≤
(

1− H(Pt ,X(b,Pt))

Pt

)−1
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where X(b, p) is defined as the maximal solution to x = κb/(p−∆(p,x)) (cf. equa-
tion (6)). Any loan with a health factor below this bound can be profitably liquidated
with appropriate frontrunning trades. In the context of a Uniswap v2 market, these
can be explicitly calculated, however the formulae do not simplify elegantly.

5. LIQUIDATION AT RISK

From the perspective of the protocol, one concern is that the capital (which needs
to be given to the liquidator, in the event of liquidation), is typically rehypothecated
to allow borrowing. It is therefore important to determine how much capital should
be kept on hand to enable efficient liquidations. From the above calculation, we see
that it is important not only to consider the number of loans whose health factor is
low, but also those whose health factor could be at risk given price manipulation on
the part of the liquidator.

Suppose the protocol has a set of loans with current states (b j,c j) j≥1, where b j

records the (current) amount of the loan and c j records the (current) amount of col-
lateral assets. We assume that the protocol knows (or can accurately estimate), the
price impact functions ∆ and H, and so can compute the function X(b, p) defined
above.

We first determine how many loans can be liquidated if there is an external price
fall to p. Given the health factor requirement, at price p, a loan can be liquidated if
θc j p ≤ b. From the perspective of the protocol, this implies a first-order liquidation-
requirement, at price p, in terms of units of collateral, is given by L1(p), for

L (p) = (1+ ℓ)∑
j

κb j

p
1{θc j p≤b j} =

κ(1+ ℓ)

p ∑
j

b j1{θc j p≤b j},

where θ is the haircut risk coefficient appearing in the (single collateral) health factor.
This is the total amount of collateral needed for (part) liquidation of all positions
which need to be liquidated at price p, and L (p) is the total size of the position
liquidated, in terms of units of collateral (including the liquidation reward).

However, we have seen above that this liquidation may involve liquidators acting
in the open market, to reduce the value of collateral – either through front-running
the liquidation process, or through offsetting their resulting collateral positions. As-
suming liquidators will liquidate all loans which is is profitable to do so, we describe
what occurs when the price exogenously moves to p, and front-running can occur.
We denote by X (p) the total quantity of collateral which needs to be traded for debt
assets (in step (ii) of the process, by the front-running liquidator);

We assume the liquidator will optimize their strategy, that is, will maximize the
final number of collateral assets they hold at the end of the process. This yields the
implicit equation for X (p):

X (p) = argmaxx

{
L (p−H(p,x))− x

}
It is clear that L is decreasing in p, so if H is increasing in x (as is usually the
case), we know that the optimal trade size is given by a trade-off between the two
terms in the maximization. We can also see that x 7→ L (p−H(p,x))−x is typically
decreasing in x, but can jump upwards whenever p−H(p,x) crosses one of the values
b j/(θc j). Therefore, the maximizer must occur at a point x ∈ {0}∪{b j/(θc j)} j>0.
This results in a discrete search problem, which can be efficiently solved offline, and
a variety of approximations can be considered (for example, if the number of loans is
very large, a smooth approximation of the sum in L1 can be considered).
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Given a potential future price p, it is then possible to determine the required treas-
ury holdings of the protocol by computing

[−L (p−H(p,X (p)))] .

If p is taken to be random, statistics such as the expected shortfall (discussed in the
next section) can be computed.

Remark 2. The computations presented here can easily be extended to a setting with
multiple collateral assets, provided we can keep track of price impacts between all
the assets.

6. COLLATERAL REQUIREMENT

The initial collateral requirements, as represented through the vector Θinit, dictate
how much of the debt asset can be borrowed at time zero given posted collateral.
As market prices evolve, it may be that the value of collateral posted (as always,
using the debt asset as a numéraire) falls, decreasing the health factor of the loan. A
collateral requirement is an ongoing restriction on the health of the position which
is acceptable within the market and should account for the risk to lenders of the
possibility of default.

The requirement can be computed as follows: Fix a period of time h > 0 e.g. 30
seconds, 1 hour or 24 hours. This ‘liquidation horizon’ must be sufficiently long for
all participants in the market to be able to observe the state of the loan and execute
transactions on the blockchain.

The protocol’s governance needs to choose a threshold Θ based on current market
conditions. This can be motivated by looking at the risk to a liquidator (or to liquidity
providers, if no external liquidator steps in), over the stated horizon. In order to be
consistent, this should also account for the interest payments which fall due within
this horizon.

To evaluate this risk, we fix a small α ∈ [0,1) and for any time t ≥ 0 require bt to
satisfy9

P
(
⟨ct+h,Pt+h⟩︸ ︷︷ ︸
collateral value

− bte
∫ t+h

t γzdz︸ ︷︷ ︸
debt with interest

≤ 0
)

︸ ︷︷ ︸
probability of loss

≤ α .

In other words, given initial collateral ct the amount bt should be chosen so that at
fixed time h > 0 the loan position remains over-collateralized with high probability
(1−α). This would lead us to set the the maximum amount which can be borrowed
to

sup
{

b ∈ R : P
(

e−
∫ t+h

t γzdz⟨ct+h,Pt+h⟩−b ≤ 0
)
≤ α

}
.

We observe that this is simply the negative of the Value-at-Risk of the discounted
collateral

VaRα((Ib
t,t+h)

−1⟨ct+h,Pt+h⟩) = inf
{

b′ ∈R :P
(
(Ib

t,t+h)
−1⟨ct+h,Pt+h⟩+b′ ≤ 0

)
≤α

}
,

where recall that Ib
t,t+h = e

∫ t+h
t γb

z dz.

9An alternative approach would be to set bt so that

P
(

inf
t ′∈[t,t+h]

{
e−

∫ t+t′
t γzdz(ct ′ ,Pt ′)−bt

}
≤ 0

)
≤ α .

The expected shortfall computation in that case would be more demanding and we expect impact of
liquidations and liquidation spirals in particular, which we discuss in the next section, to be more
significant.
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Here b = −b′ will be positive, and is interpreted as the amount of debt asset that
can be borrowed based on the collateral. However, VaRα((Ib

t,t+h)
−1⟨ct+h,Pt+h⟩) does

not tell us the size of the losses in case the collateral c is insufficient. For this reason
it makes more sense to set the initial borrowed amount at the negative of the expected
shortfall in case the VaR is insufficient:

ESλ ((I
b
t,t+h)

−1⟨ct+h,Pt+h⟩) =
1
λ

∫
λ

0
VaRα((Ib

t,t+h)
−1⟨ct+h,Pt+h⟩)dα

= E
[
− (Ib

t,t+h)
−1⟨ct+h,Pt+h⟩

∣∣∣⟨ct+h,Pt+h⟩<−VaRλ ((I
b
t,t+h)

−1⟨ct+h,Pt+h⟩)
]
.

(9)

The last equality tells that the negative of the expected shortfall is the average value
of the collateral, conditioned on the event that value of the collateral falls below the
level −VaRα((Ib

t,t+h)
−1⟨ct+h,Pt+h⟩).

To be able to compute the expected shortfall (9) one needs to model the joint be-
haviour of all collateral assets and approximate the conditional expectation which
in general is computationally demanding, statistically uncertain, and often requires
combination of parametric approximations with Monte Carlo simulations. Particu-
larly in a blockchain setting, this is computationally impractical.

For this reason, it is common to make the simplifying assumption that no offsetting
is permitted among the collateral assets. In addition, for the sake of robustness, we
can also assume that the interest earned on collateral during the liquidation horizon
is not included. In this case, we can consider using only the jth collateral asset, and
derive the condition (using properties of the expected shortfall)

b ≤ ESλ (⟨ct ,Pt+h⟩) = ESλ (c
j
t ·P

j
t+h) = c j

t ·
ESλ (P

j
t+h)

P j
t

·P j
t . (10)

By comparison with the health factor defined above, this suggests the choice of risk
factors

θ
j

t =
ESλ (P

j
t+h)

P j
t

= ESλ

(P j
t+h

P j
t

)
.

That is, the risk factor θ j should be set as the expected shortfall of the return of the
collateral asset (in terms of the debt asset as numéraire) over the desired liquidation
horizon.

Even in this simplified setting, we still require a model for the price returns of
the collateral assets. This involves statistical modelling, which should account for
wrong-way risk (that liquidations will typically occur in periods of heightened market
stress), leading to exaggerated estimates of the expected shortfall, when compared
with usual market conditions. This modelling, which results in the estimation of risk
factors θ j, will typically need to occur off chain.

We have also not directly incorporated the price impact of potential liquidations
that may happen over [t, t +h] (which we describe in more detail in the next section).

7. NUMERICAL SIMULATIONS

Throughout this section we focus on the pair WETH-USDT, where USDT is the
borrowed asset and WETH is the collateral asset. We use the Uniswap v2 pool for
this pair as the reference market. We refer the reader to Appendix B for more details
about the data that we use in our experiments.

We divide this section in
(1) A simulation subsection that requires a model calibration for the price of

WETH-USDT to historical data, in order to calculate (a) the liquidation
threshold θ and (b) the collateral at risk, under different modelling assump-
tions.
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(2) A subsection showing the properties of of over-collateralized lending pro-
tocols under different liquidity scenarios of the underlying market. In this
subsection it is not so important to show how the liquidation threshold θ

is derived under some modelling assumption, but to provide a visualisation
of the possible effects of liquidation once θ and the liquidation bonus ℓ are
fixed.

7.1. WETH-USDT model calibration. Consider an open position with USDT as
the borrowed asset and WETH as the only deposited collateral asset. We set t as the
1st of January of 2023, and fix h to be 12 days after t10. The calculation of ESλ (Pt+h)
in (10) requires some modelling assumption on Pt . We model it by a SABR model

dPt = µtdt +Vt(Pt)
β dW 1

t , P0 = p0

dVt = ν ·VtdW 2
t , V0 = α0

d⟨W 1
t ,W

2
t ⟩= ρdt

(11)

where W = (W 1
t ,W

2
t ) is a 2-dimensional Brownian motion. We calibrate the para-

meters β ,α0,ν ,ρ to call options prices data, take p0 = 1195.7 the price of ETH in
USD on the 01/01/2023, and set the drift so that we get three different scenarios,

– µt is such that (E(Pt))t≥t0 is monotone decreasing,
– µt = 0,
– µt is such that (E(Pt))t≥t0 is monotone increasing.

Figure 1 provides sample paths for the calibrated models.
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FIGURE 1. Liquidation threshold θ for three drift scenarios.

7.1.1. Liquidation threshold θ . We use Monte Carlo simulations of (11) to approx-

imate the risk factor θ =−ESλ

(
P j

t+h

P j
t

)
where h = 12 days, see Figure 1. For each of

the above three scenarios, we get θ = 0.83,θ = 0.96,θ = 1.08 respectively.
Note that if µt is calibrated so that E(Pt) increases in time, then on average the

predicted loan-to-value decreases, and under this model it would be enough for a
borrower to undercollateralize their loan (since θ > 1) if there was a mechanism to
stop them from walking away. However, in this case, the bound on the liquidation
bonus established in Lemma 3 is violated.

7.1.2. Liquidation at risk. We derive the liquidation at risk

−ESα [−L (Pt+h −H(Pt+h,X (Pt+h)))],

under the three modeling assumptions for the drift µt for the price Pt of ETH in USD,
and under liquidity scenarios considered in Table 1, namely

10The choice of h is arbitrary and corresponds to protocol governance risk appetite
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– Liquidity scenario queried from historical data on using GraphQL on the 1st
of January of 2023. The pool liquidity constant is k = 108544044156.00478,
with initial price Pt = 1195.16.

– Low liquidity scenario. Liquidity is 10−4k where k is the real liquidity, and
we fix the initial price of WETH in USD Pt = 1195.16

– Very low liquidity scenario. Liquidity is 10−5k where k is the real liquidity,
and we fix the initial price of WETH in USD Pt = 1195.16.

We consider a range for the risk parameter θ ∈ [0.7,1) and we also consider two open
positions with initial collateralization scaling 0.8 and 0.9:

(1) A very overcollateralized position with

ct = 1 WETH, bt = ct ·Pt ·θ ·0.8 USDT

for each θ that we consider in the range [0.7,1).
(2) A slightly less overcollateralized position with

ct = 1 WETH, bt = ct ·Pt ·θ ·0.9 USDT

for each θ that we consider in the range [0.7,1).
Using the calibrated SABR model for Pt we calculate the liquidity at risk −(1+

ℓ)ESα [L (Pt+h −H(Pt+h,X (Pt+h)))] via Monte Carlo simulations. That is, for each
Monte Carlo sample pt+h ∼ Pt+h to find L (pt+h −H(pt+h,X (pt+h))), which we
can use to calculte the liquidity at risk as a Monte Carlo average.
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FIGURE 2. Liquidation at risk

We see in Figure 2 that lower values of θ yield a higher collateral at risk, since
adversarial liquidations can be triggered for lower values of Pt+h. If we model Pt
with a drift such that E(Pt) is decreasing in time, then adversarial liquidations will
be triggered with higher probability at t +h, yielding higher collateral at risk values
in all the θ regimes and all the liquidity regimes. Finally, lower liquidity implies a
higher slippage ∆(p,x) which, as we have seen in previous examples, also encourages
adversarial liquidations.

7.2. Properties of overcollateralized protocols. Throughout this section, we con-
sider the three liquidity scenarios from Table 1. We consider USDT as the bor-
rowed asset, and WETH as the collateral asset, and Pt = 1195 the price of WETH
in USD for t = 01/01/2023. We will fix the borrowed amount to be b = 5000 USDT,
θ ∈ [0.75,1), c = b

Pt ·θ ·0.95 WETH (that is, the loan is overcollateralised above the
liquidation threshold). The liquidation price at which HFt = 1 satisfies Pliq := b

c·θ .

7.2.1. Liquidation bonus bounds. We study the bounds for (1+ℓ) so that the liquid-
ation procedure is profitable for the liquidator, under different liquidity scenarios.

We consider Uniswap v2 as the referece market, where ∆(Pt ,x) and H(Pt ,x) have
explicit form provided in Example 1. For simplicity, we assume zero-gas fees.
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We have stated that the bonus bounds for liquidation to be effective are

1+ ℓ ∈
[ Pliq

Pliq −∆(Pliq,x)
,

1
θ

]
.

These are showed in Figure 3. Note that the lower the liquidity the bigger the slippage
∆(Pliq,x) yielding bigger (unrealistic) lower bounds for the liquidation bonus.
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FIGURE 3. Bounds for the liquidation bonus under different liquid-
ity scenarios. The red region covers the combination of θ ,(1+ ℓ)
values for which liquidation is not profitable

We extend the study by calculating the health factor after liquidation, HFt+, at each
point of the θ ,(1+ ℓ)-grid for the different liquidity scenarios, see Figure 4. The red
line provides the contour line where HFt+ = 1, and it divides the plot in the region
where liquidation will trigger further liquidations (HFt+ < 1) and the region where
liquidation will bring the position to a healthy factor (HFt+ > 1). We can see that for
high values of θ , the liquidation bonus has to be low in order for the liquidation to
be effective. As the market liquidity decreases, θ needs to be conservatively low to
avoid liquidation spirals.
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FIGURE 4. Contour plot depicting the health factor after liquida-
tion, HFt+ (cf. (5)) for the three most liquid scenarios considered in
Table 1.

We can use Figure 4 to correct the bounds depicted in Figure 3 so that the liquid-
ation bonus is profitable for the liquidator AND does not cause further liquidations
on the same position. We superimpose both figures yielding the updated bounds in
Figure 5. Note that In the very low liquidity scenario and for the considered values of
θ ,(1+ ℓ) all liquidations will trigger further liquidations.

7.2.2. Paradox of adversarial liquidation protocols. We visualise the paradox of ad-
versarial protocols using the scenarios from Figure 3. Recall that Figure 3 is created
assuming that for each θ ∈ [0.7,1) the price of the collateral asset is such that loan is
in distress. In Figure 6 we add the additional lower bound (in green) for (1+ ℓ) such
that running a front-run trade to trigger liquidation is profitable for an adversarial
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FIGURE 5. Bounds on liquidation bonus needed to avoid further li-
quidations

liquidator. We see that as market is less liquid the adversarial liquidation becomes
more profitable.

Note that in the (fictitious) low liquidity scenarios, the price impact H of the front-
run trade offset the slippage ∆ of the front-run trade, and it would already be enough
to have negative liquidation bonus for the procedure to be profitable.
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FIGURE 6. Paradox of of adversarial liquidation protocols. When
(1+ ℓ) is above blue line, the liquidation is profitable (see Lemmma
3). When (1+ ℓ) is above green line the adversarial liquidation is
profitable.

7.2.3. Implied bound on the health factor. We find the implied bound on the health
factor in the three scenarios in Table 1, for different prices P ∈ [1200,1800]. We
remind the reader that following the paradox of adversarial liquidation protocols, if
the liquidation bonus is set so that liquidation is effective, then adversarial liquidation
is also effective. That is, in order to avoid adversarial liquidation it is not enough for
the health factor to be greater than one, but it has to be greater than the bound(

1− H(P,X(b,P))
P

)−1

where X(b, p) is defined as the maximal solution to x = κb/(p−∆(p,x)).
Figure 7 provides the Implied Bound depending on the price of ETH in USD in the

three different liquidity scenarios from Table 1. As expected, the lower the liquidity,
the higher the price impact H(P,X(b,P)) which in turn increases the implied bound.

7.2.4. Cost to trigger liquidation. In this section we plot the cost in WETH (the
collateral asset) to trigger a liquidation. That is x such that

HFt ·
(

1− H(P,x)
P

)
= 1,

in the three scenarios in Table 1. The cost is displayed in Figure 8. We see a positive
correlation between the cost to trigger the liquidation and the liquidity of the external
market.
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FIGURE 7. Implied bound on Health Factor
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APPENDIX A. PROOF OF PARADOX OF ADVERSARIAL LIQUIDATION PROTOCOLS

In this section we prove the inequalities leading to the paradox of adversarial li-
quidation protocols, namely

1+ ℓ >
Pt −H(Pt ,x)

(Pt −H(Pt ,x))−∆(Pt −H(Pt ,x),x′)
>

Pt −H(Pt ,x)
Pt −∆(Pt ,x)

,

where x,x′ are the consecutive trades that buy κb, solving

κb = x(Pt −∆(Pt ,x))

κb = x′
(
(Pt −H(Pt ,x))−∆(Pt −H(Pt ,x),x′)

)
.

The first inequality is provided by the bounds derived for the liquidation bonus so
that liquidation procedure is profitable. In order to prove the second inequality, we
need the auxiliary Lemma 5 that shows that x′ ≥ x, and then Lemma 2 proves the
inequality.

Lemma 5. Consider a CFM with convex trading function ψ , reserves Xt ,Yt , and
consider the two consecutive trades

(1) The trader buys κb units of the second asset and pays x units of the first asset.
reserves in the first asset move from Xt to Xt + x.
reserves in the second asset move from Yt to Yt −κb

(2) The trader buys κb units of the second asset and pays x′ units of the first
asset.

reserves in the first asset move from Xt + x to Xt + x+ x′.
reserves in the second asset move from Yt −κb to Yt −2 ·κb

Then, x′ ≥ x.

Proof. Each trade yields the following changes in the pool reserves

ψ(Xt)−ψ(Xt + x) = κb

ψ(Xt + x)−ψ(Xt + x+ x′) = κb,

therefore

2ψ(Xt + x)−ψ(Xt)−ψ(Xt + x+ x′) = 0.

After rearranging and using the convexity of ψ , we get

ψ(Xt + x) =
1
2

ψ(Xt)+
1
2

ψ(Xt + x+ x′)≥ ψ

(
Xt +

x+ x′

2

)
.
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Since ψ is a decreasing function (higher reserves in one asset yield lower reserves in
the second asset), we get

Xt + x ≤ Xt +
x+ x′

2
⇔ x′ ≥ x.

□

Theorem 2. In the CFM with level function Ψ(x,y) = k, and convex trading function
y = ψ(x) we have

Pt −H(Pt ,x)
(Pt −H(Pt ,x))−∆(Pt −H(Pt ,x),x′)

>
Pt −H(Pt ,x)
Pt −∆(Pt ,x)

,

where x,x′ are the consecutive trades that buy κb, solving

κb = x(Pt −∆(Pt ,x))

κb = x′
(
(Pt −H(Pt ,x))−∆(Pt −H(Pt ,x),x′)

)
.

Proof. It is enough to check

(Pt −H(Pt ,x))−∆(Pt −H(Pt ,x),x′)< Pt −∆(Pt ,x),

i.e.
H(Pt ,x)> ∆(Pt ,x)−∆(Pt −H(Pt ,x),x′). (12)

In a CFM we know the forms of H(Pt ,x),∆(Pt ,x). Let Xt be the reserves amount of
the collateral asset in the CFM at time t, then

Pt =−ψ
′(Xt)

H(Pt ,x) =−ψ
′(Xt)− (−ψ

′(Xt + x))

∆(Pt ,x) =−ψ
′(Xt)−

(
−ψ(Xt + x)−ψ(Xt)

x

)
.

Therefore, after replacing in (12), we get

−ψ
′(Xt)+ψ

′(Xt + x)>−ψ(Xt)+
ψ(Xt + x)−ψ(Xt)

x

−
(
−ψ

′(Xt + x)+
ψ(Xt + x+ x′)−ψ(Xt + x)

x′

)
⇔ 0 >

ψ(Xt + x)−ψ(Xt)

x︸ ︷︷ ︸
=− κb

x

− ψ(Xt + x+ x′)−ψ(Xt + x)
x′︸ ︷︷ ︸

=− κb
x′

⇔ κb
x

− κb
x′

> 0

which holds because from Lemma 5 we know that x′ > x. □

APPENDIX B. DATA

We consider Uniswap v2, where ∆(Pt ,x),H(Pt ,x) have explicit form provided in
Example 1. For simplicity, we assume zero-gas fees.

We query the Uniswap v2 GraphQL database 11 to obtain the liquidity constant k
on the 1st of January of 2023. Furthermore, we create additional fictitious Uniswap
pools with lower liquidity k−n = 10−nk for n = 4,5.

Table 1 provides the Uniswap v2 liquidity scenarios.

11https://api.thegraph.com/subgraphs/name/ianlapham/governance-tracking

 https://api.thegraph.com/subgraphs/name/ianlapham/governance-tracking
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Uni. v2 liquidity Uni. v2 reserves Label in plots

10−5k WETH: 30.91, USDT: 35114.06 Very low liquidity
10−4k WETH: 97.75, USDT: 111040.40 Low liquidity
k WETH: 9775.18, USDT: 11104040.38 Real liquidity

TABLE 1. Uniswap v2 liquidity scenarios, with the last row being
the real one on the 1st of January queried from the Graph, and k =
108544044156.00478. The third column provides the labels we use
in Figures 3, 4, 5, 7, 8.
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